

detect and identify

Air Monitoring at PET Centers

Dr. Alfred Klett

Berthold Technologies, Bad Wildbad, Germany

21st Annual Air Monitoring Users Group (AMUG) Meeting Palace Station Hotel, Las Vegas, Nevada, USA, 6th May 2009

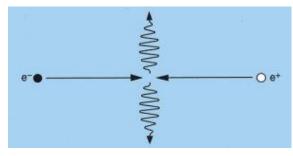
Overview

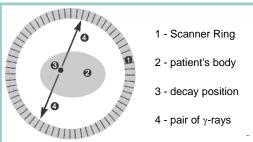
- What is PET?
- Pet Nuclides
- Radiation Protection at PET Centers
- Regulatory Requirements
- Air Monitoring Techniques
- Examples
- References

operating worldwide

What is PET?

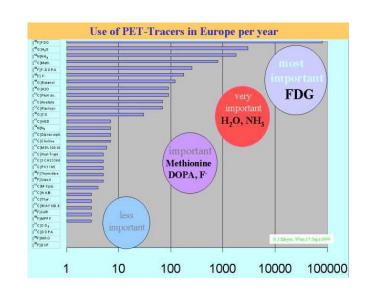
- PET : = Positron emission tomography
- Medical imaging technique
 - nuclear
 - noninvasive
 - image of a radioactive tracer concentration in an organism
- Images of
 - Structures
 - Functional processes
 - Biochemical
 - Physiological


PET-Scanner Siemens



How does it work?

- Positron-emitting radionuclides are used as tracers
 - Positron anti-particle of the electron
 - Positrons annihilate with electrons (their antiparticles)
 - Energy is released by the emission of a pair of gamma rays
 - moving in opposite directions
 - each with 511 KeV
- Detection of gamma rays in coincidence with scintillator crystal arrays (detector rings)

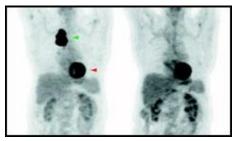


PET Nuclides

Most important PET Nuclides

Radionuclide	2	Halflife
carbon	¹¹ C	20 min
nitrogen	¹³ N	10 min
oxygen	¹⁵ O	2 min
fluorine	¹⁸ F	110 min

- Examples tracers
 - FDG ¹⁸F-Fluorodeoxyglucose
 - with ¹⁸F labelled glucose analog
 - □ radioactive ¹⁵O for inhalation



Detection and Image Reconstruction

- Radiopharmaceuticals are administered to patients by
 - Injection
 - Inhalation
- Detection of gamma rays
 - Frequently with scintillation counters for example BGO, LuYSiO, LuSiO
 - Coincidence width 10 ns
- Localization of the point of the source along a straight line of coincidence by calculating the line of response (LOR)
- Calculation of image from projections

Tumor in the lobe of the lung

After successful chemo therapy

PET Center

- PET Center facilities
 - Cyclotron for isotope production
 - Hot cells, cells for synthesis
 - Laboratories
 - PET Scanner
- Generation of radionuclides
- Synthesis and analysis of radiopharmaceuticals
- Imaging, diagnosis

Generation of PET-Nuclides

- Generation of short-lived radionuclides at a cyclotron
- Irradiation with protons or deuterons with typical energies 9 to 18 MeV
- Nuclear reactions (p,n), (p,α) , (d,n) or (d,α)
- with targets ¹⁴N, ¹⁶O, ¹⁸O or ²⁰Ne
- Typical beam currents
 - 80 μA for protons
 - 35 µA for deuterons

Fabrication des isotopes			
			¹ H-)18 MeV 40 μA ² H-)9 MeV 30 μA
Isotope	Cible	Réaction	Molécule
18F	¹⁸ O (H ₂ ¹⁸ O) ²⁰ Ne (gaz)	(p,n) (d,α)	¹⁸ F- [¹⁸ F]FDG [¹⁸ F]F ₂ [¹⁸ F]FDOPA
11C	¹⁴ N (N ₂ -gaz)	(p,α)	[¹¹ C]CO ₂
13N	¹⁶ O (H ₂ O)	(p,α)	[13N]NH ₃
15O	¹⁴ N (N ₂ -gaz)	(d,n)	H ₂ ¹⁵ O, C ¹⁵ O

Radiation Protection at PET centers

- Contamination monitoring
 - Personal monitors
 - handheld instruments
- Individual dosimetry
- Area dose monitoring
 - gamma
 - neutron
- Airborne Radioactivity Monitoring
 - Release measurement
 - Process monitoring
- Central data acquisition & analysis

PET Stack Monitoring

- Possibility for the release of radioactive gases or contaminated air
- Discharges of radioactive effluents could cause radiation exposures
 - Avoid uncontrolled discharges to the environment
 - In Germany 0.3 mSv concept (§47 Radiation Protection Ordinance)
 - Discharge of radioactive material from nuclear facilities has to be monitored (§ 48 Radiation Protection Ordinance)
 - Measurement of discharged activity concentrations and total activities required

Regulatory Requirements (Germany)

- Radiation Protection Ordinance (§ 47 and § 48)
- Limits for max. activity concentrations depending on stack flow (two groups)

Nuclid		Halflife	E _{max}	Limits Radiation Protection Ordinance Attachment VII	
		[min]	[MeV]	$Q \le 10^4 \text{ m}^3 \text{ h}^{-1}$ [kBq/m ³]	$10^4 < Q \le 10^5 \text{ m}^3 \text{ h}^{-1}$ [kBq/m ³]
¹¹ C	Carbon-11	20,3	0,96	30	3
¹³ N	Ntrogen-13	9,96	1,20	20	2
¹⁵ O	Oxygen-15	2,03	1,70	10	1
$^{18}\mathrm{F}$	Fluorine-18	109,8	0,64	5	0,5
⁴¹ Ar	Argon-41	109,6	1,20	2	0,2

Sampling

- According to German sampling standard DIN 25423
- Position of measuring detector shall be downstream of last confluence
- two types of setups
 - In-line measurement: measured directly in the main air stream
 - Bypass Measurement: Isokinetic extraction and measurement of partial flow or representative sample from total effluent's flow

Process Monitoring

- ► Fast detection of discharges from critical zones for instance
 - ventilation exhaust air from hot cells
 - ventilation air from cyclotron bunker
- **■** Effluent control (for example: close duct,)
- Requirements
 - small volume and high detection efficiency
 - largest possible ratio between sample and system air flow in a duct or in a stack
 - low external gamma levels (compensation or shielding)
 - Dynamic averaging to achieve fast detection risetime

Environmental Release or Stack Monitoring

- Measurement & documentation of the activity released in the total flow
 - current activity concentration [Bq/m³]
 - Integrated activity within a specified period of time (for instance Bq per day, week, month, year)
- Requirements
 - Detection limit of the system shall be lower than the regulatory limits for the activity concentrations (for example 0.5 kBq/m³ for ¹⁸F @air flow >10⁴ m³/h)
 - Measurement of flow if it is variable
- if exceeding predefined levels actuation of optical or acoustical alarms or of air control functions

Air Monitoring Detection Methods for PET

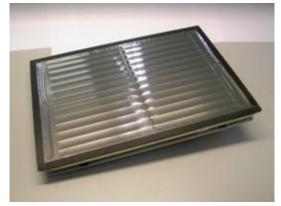
- Gamma detection
 - Scintillation counters or gas filled detectors
 - coincidence detection of 511 keV photons
- Charged particle detection (positrons)
 - sealed large area proportional counters
 - cylindrical proportional counter tubes

Air Monitoring Detection Methods for PET

- Gamma detection
 - not well localized because 511 keV photon are everywhere in a PET facility
 - more sensitive against external gamma levels
- Charged particle detection
 - Extremely well localized
 - Not very sensitive against external gamma levels

Air Monitoring Detection Methods for PET

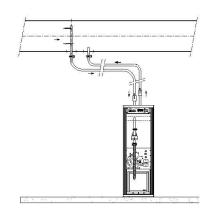
- Scintillation detection
 - Temperature drifts
 - more sensitive against external gamma levels
 - Conincidence measurement requires more effort
- Detection with large area proportional counters
 - Relatively large solid angle
 - Lower sensitivity against external radiation fields

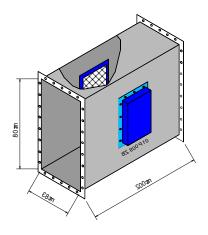


Examples large area proportional counters

- Same efficiency for $β^+$ and $β^-$
- ► Active areas up to 1000 cm²
- Assembly on ducts or stacks is straightforward and easy
- Sensitivity is determined by the measured volume
- Argon-Methane filling for lower background counting rate

BZ 200 with 200 cm²


BZ 900 with 900 cm²



Two different Setups

- Chamber with pump for bypass measurement
 - Volumes 11 or 83 liters (calibrated)
 - 1-4 large area PCs (200 or 900 cm²)
 - compensation detector or 4π lead shielding (2 cm) optional
- Detection at the ventilation duct
 - standard area cut-out (calibrated)
 - Detectors with 900 cm² area
 - compensation detector or rear side lead shielding optional (2cm)

Example

- Duct cross section 800 mm x 360 mm
- Equipped with two large area proportional counters BZ900 each with area 900 cm²
- response to ¹⁸F 80 Bq/m³ per cps
- Minimum detectable activities (MDAs) according to table below

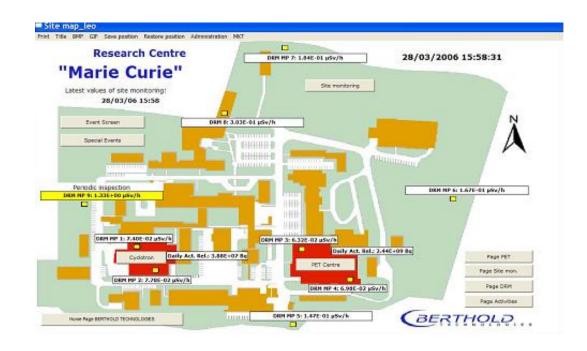
	9 1	
1		

Nuclide	¹⁸ F	¹¹ C, ¹⁵ O	Units
Calibration Factor	80	48	Bq/m³ per cps
MDA 10 s	650	400	Bq/m ³
MDA 30 min	50	30	Bq/m ³
MDA 1 h	34	20	Bq/m ³

Example Measuring Chamber BAI 9109-4

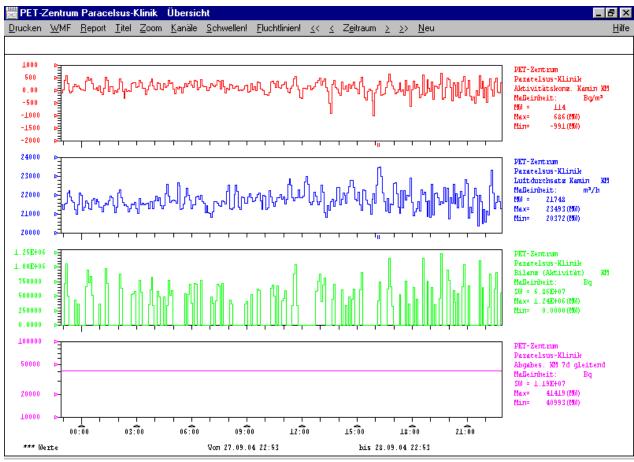
- 11 liter measuring chamber (calibrated)
- 1 to 4 large area proportional counters type BZ 200 each with 200 cm²
- Detection limits according to table

Nuclide	¹⁸ F	¹¹ C	⁴¹ Ar	Units
Response	775	420	407	Bq/m³ per cps
MDA 600 s	723	392	380	Bq/m³
MDA 1800 s	418	226	219	Bq/m³
MDA 3600 s	295	160	155	Bq/m³
MDA 7200 s	209	113	110	Bq/m³


11 liter chamber BAI 9109-4

Data Acquisition MEVIS Software

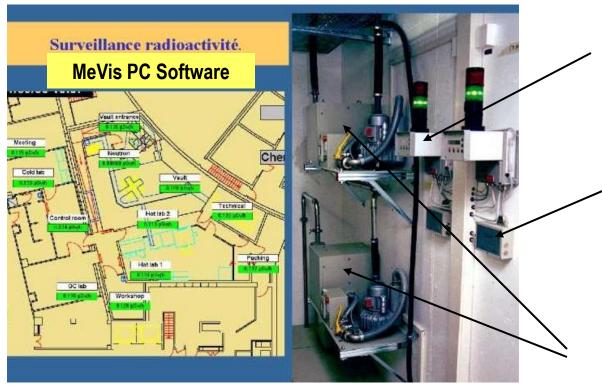
- Control of communication with instruments
- Data Acquisition& display ofmeasured values
- Display data as function of time
- Report generators



operating worldwide

MEVIS Software

Activity Concentration


Air Flow

Examle PET Center Geneva/Switzerland

LB111 Data Logger
Data Acquisition

RS485 Interface Connection to central computer via RS485

BAI9109- PET Gas Monitors
11 Liter Volume Measuring Chambers

MEVIS-Data Acquisition System PET-Geneva

Some PET References

KfK-Karlsruhe	PET UKRV Berlin	PET-Bonn
KfA-Jülich	PET AKH Vienna	PET-Oak Ridge
University Hannover	PET Bad Berka	ISPN/CEA-Octeville
PET-Center Munic	NYCOMED Amersham	PET-Genf
BTZ, Hamburg	PET-Erlangen	PET-Thoiry
VKTA-Rossendorf	PET-Regensburg	SHFJ Orsay Paris
PET Bad Oeyenhausen	Hopital Depardieu- Paris	PET Complutense Madrid
PET-Tübingen	EuroPET-Berlin	PET-Essen
PET Charite, Berlin	PET-Leipzig	CISBO Schering